Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Carlos GO
mateRNAl
Commits
3c461bd0
Commit
3c461bd0
authored
Jun 09, 2018
by
Carlos GO
Browse files
plotting script
parent
4b556f0c
Changes
3
Hide whitespace changes
Inline
Side-by-side
fitness_landscape.py
0 → 100644
View file @
3c461bd0
import
sys
import
numpy
as
np
import
numpy
from
mayavi
import
mlab
import
matplotlib.pyplot
as
plt
R
=
0.0019872041
T
=
310.15
def
landscape_plot
(
beta
=
1
,
alpha
=
1
):
x
=
np
.
linspace
(
-
80
,
0
,
200
)
y
=
np
.
linspace
(
0
,
1
,
200
)
xx
,
yy
=
np
.
meshgrid
(
x
,
y
)
z
=
np
.
exp
((
-
1
*
beta
*
xx
)
/
(
R
*
T
)
-
(
alpha
*
yy
))
# z = (-1 * beta * xx) - (alpha * yy)
plt
.
plot
(
np
.
exp
(
-
1
*
beta
*
x
/
(
R
*
T
)))
plt
.
show
()
plt
.
scatter
(
xx
,
yy
,
c
=
z
)
plt
.
xlabel
(
"Energy"
)
plt
.
ylabel
(
"Unpaired"
)
plt
.
title
(
"beta=0.01, alpha=1 unpaired fitness"
)
cb
=
plt
.
colorbar
()
cb
.
set_label
(
"Fitness"
)
plt
.
show
()
sys
.
exit
()
print
(
z
)
mlab
.
figure
(
bgcolor
=
(
1
,
1
,
1
))
mlab
.
surf
(
x
,
y
,
z
)
mlab
.
axes
(
xlabel
=
'energy'
,
ylabel
=
'paired'
,
zlabel
=
'fitness'
,
color
=
(
0
,
0
,
0
))
mlab
.
show
()
if
__name__
==
"__main__"
:
landscape_plot
(
beta
=
.
01
,
alpha
=
1
)
pass
parse.py
View file @
3c461bd0
...
...
@@ -21,26 +21,31 @@ def struc_plot(dfs, sse='multi', mode='mutations'):
# dfs = (structure_info(df) for df in dfs)
# strucs = pd.concat(dfs).groupby(mode).mean()
# pickle.dump(strucs, open("lehm_df_muts.csv", "wb"))
strucs
=
pickle
.
load
(
open
(
"lehm_df_muts.csv
"
,
"rb"
))
strucs
=
pickle
.
load
(
open
(
f
"Data/lin2_df_
{
mode
}
.pickle
"
,
"rb"
))
sse_mean
=
strucs
[
sse
]
# k = 100
# s_l = list(sse_mean)
# bins = [np.mean(s_l[i:i+k]) for i in range(0, len(s_l) - k)]
sns
.
tsplot
(
sse_mean
)
plt
.
xlabel
(
"Multiloops"
)
plt
.
ylabel
(
"Energy"
)
plt
.
title
(
"Energy based mutation rate"
)
# plt.savefig("multi_lehm_mut.pdf", format="pdf")
# sns.tsplot(bins)
plt
.
xlabel
(
f
"
{
mode
}
"
)
plt
.
ylabel
(
f
"
{
sse
}
"
)
plt
.
title
(
"linear mutation rate"
)
# plt.savefig(f"Figures/stnd1_{mode}_{sse}.pdf", format="pdf")
plt
.
show
()
# print(sse_mean)
def
mut_plot
():
sig
=
lambda
e
:
1
/
(
3
+
np
.
exp
(
-
e
/
15
))
# sig = lambda e: 1 / (3 + np.exp(-e/15))
sig
=
lambda
e
:
1
/
(
80
+
np
.
exp
(
-
e
/
25
))
print
(
sig
(
-
80
))
plt
.
plot
([
sig
(
x
)
for
x
in
np
.
arange
(
-
80
,
0
,
1
)])
plt
.
xticks
(
np
.
arange
(
0
,
80
,
10
),
np
.
arange
(
-
80
,
0
,
10
))
plt
.
show
()
if
__name__
==
"__main__"
:
path
=
"maternal_50_adaptive_0.csv"
#
path = "maternal_50_
.
adaptive_0.csv"
dfs
=
(
pd
.
read_csv
(
f
"maternal_lehm_
{
i
}
.csv"
)
for
i
in
range
(
20
))
struc_plot
(
dfs
,
sse
=
'multi'
,
mode
=
'
mut
ation
s
'
)
struc_plot
(
dfs
,
sse
=
'multi'
,
mode
=
'
gener
ation'
)
# mut_plot()
pass
plot.py
0 → 100644
View file @
3c461bd0
import
sys
import
matplotlib.pyplot
as
plt
import
numpy
as
np
import
pandas
as
pd
plt
.
style
.
use
(
'fivethirtyeight'
)
labels
=
{
'orig'
:
'original'
,
'lin2'
:
'energy-mut'
,
'norm'
:
'gauss-fitness'
,
'nosel3'
:
'no-selecion'
,
'unp'
:
'unpaired-objective'
,
'beta01'
:
'beta=0.1'
}
def
maternal_plot
(
exps
,
feature
=
'multi'
,
mode
=
'mutations'
):
for
e
in
exps
:
df
=
pd
.
read_csv
(
f
"Data/
{
e
}
_df_
{
mode
}
_mean.csv"
)
plt
.
plot
(
df
[
feature
],
label
=
f
'
{
labels
[
e
]
}
'
)
plt
.
xlabel
(
mode
)
plt
.
ylabel
(
feature
)
plt
.
legend
()
plt
.
tight_layout
()
plt
.
show
()
pass
def
subfigs
(
exps
,
dim1
,
dim2
,
mode
=
'mutations'
,
feature
=
'multi'
):
count
=
1
modes
=
[
'mutations'
]
features
=
[
'multi'
,
'energy'
]
for
mode
in
modes
:
for
feature
in
features
:
plt
.
subplot
(
len
(
modes
),
len
(
features
),
count
)
count
+=
1
for
e
in
exps
:
df
=
pd
.
read_csv
(
f
"Data/
{
e
}
_df_
{
mode
}
_mean.csv"
)
plt
.
plot
(
df
[
feature
],
label
=
f
'
{
labels
[
e
]
}
'
)
plt
.
ylabel
(
feature
)
plt
.
xlabel
(
mode
)
plt
.
legend
()
plt
.
tight_layout
()
plt
.
show
()
if
__name__
==
"__main__"
:
exps
=
[
'orig'
,
'unp'
,
'nosel3'
,
'norm'
,
'beta01'
,
'lin2'
]
# maternal_plot(exps, feature='entropy')
subfigs
(
exps
,
2
,
3
)
pass
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment